ISHAM Working Group on *Malassezia* epidemiology and pathobiology

Convener and contact: A. Velegraki, aveleg@med.uoa.gr

I. General Objectives

New members of the genus *Malassezia* have been identified during the last 10 years and the genus now comprises 11 species. Their ubiquitous presence and their involvement in skin diseases besides constituting a possible financial burden for patients may also affect their quality of life. Data on the epidemiology and pathogenicity of individual species and the role of strains with distinct genotypes are either sparse or absent. Studying the global epidemiology of *Malassezia* species and their potential to cause disease in humans and animals will highlight aspects of the association of these commensal and pathogenic organisms with their habitat, which is the skin of humans and animals (Figure 1).

![Malassezia commensal to pathogen](image)

Figure 1. Factors that underlie the transformation of *Malassezia* yeasts from commensals to pathogens are still poorly understood. Establishing an ISHAM Working Group is among the primary necessities for achieving this objective.

a. Epidemiology of *Malassezia* yeasts.

There are many problems that have been encountered in epidemiological studies. Investigations on the isolation of a mixture of species from healthy and diseased skin have indicated that the fastidious species *M. globosa*, *M. restricta* and *M. obtusa* may be overgrown in culture by those which are more amenable to laboratory conditions, i.e. *M. furfur* and *M. sympodialis*. Also, interlaboratory variations in the procedures for isolation, recovery and identification of *Malassezia* species may have a significant impact on the reported recovery rates for these organisms. Nevertheless, from the worldwide reports, current data suggest that individual *Malassezia* species have different geographical distributions. *M. sympodialis* is isolated at high rates from healthy volunteers and patients suffering from atopic or seborrheic dermatitis in the North of Europe, whereas in the South of Europe *M. globosa* has been the predominant species in healthy subjects as well as in pityriasis versicolor and seborrheic dermatitis patients. Moreover, *M. obtusa* is frequently isolated from atopic dermatitis patients and healthy volunteers in the North and no *M. obtusa* isolation has been reported in the South of Europe. In Japan, extensive use of sequencing of isolates from epidemiological studies of healthy volunteers and atopic dermatitis patients have resulted in the description of the new species *M. dermatis*, *M. japonica* and *M. nana*. In the molecular epidemiology of *Malassezia* species several techniques have been applied, each one demonstrating interesting aspects of the dispersion and ecology of this genus. Amplified fragment length polymorphism analysis (AFLP), sequencing of the rDNA, PCR-fingerprinting, PCR-single strand conformational polymorphism analysis (PCR-SSCP) and PCR-restriction fragment length polymorphism analysis (PCR-RFLP), Fourier transform infrared
spectroscopy (FT-IRS) and the terminal fragment length polymorphism (tFLP) method have been used by independent groups for typing Malassezia strains, as well as for identification and typing directly from skin specimens. Furthermore, the identification and typing potential of novel methods, such as the Luminex xMap and multilocus sequencing typing (MLST) remain to be evaluated.

The results so far have highlighted an association of M. globosa subtypes with atopic dermatitis and pityriasis versicolor lesions, as well as a correlation between certain M. furfur subtypes and certain geographical areas. M. sympodialis displayed little variation within the species. There are few data on M. japonica, M. nana and M. dermatis subtypes which have been almost exclusively reported from Japan. However, based on nucleotide sequence analysis of the D1/D2 and ITS1 regions, strains of M. nana isolated from animals in Brazil have displayed some divergence among themselves as well as showing differences from the Japanese isolate.

On the whole, the molecular methodology employed so far has produced seemingly unequivocal results. However, these are not always directly comparable because the protocols for sampling, inoculation media, colony identification and further processing of the Malassezia isolates vary extensively. Only a few data are available about the distribution of Malassezia yeasts on the skin of domestic or wild animals. Most studies have been concerned with the non lipid- dependent species M. pachydermatis in dogs. These investigations highlighted the common association of M. pachydermatis with otitis externa and canine seborrheic dermatitis and canine atopic dermatitis. M. pachydermatis is also an occasional cause of otitis and dermatitis in cats. Further surveys have demonstrated that lipid-dependent yeasts may be isolated from other animals (cats, ungulates or birds) and there are sporadic reports of skin disease caused by Malassezia in horses and goats. Recently, two new species, M. equina and M. caprae, have been isolated from healthy animals in Spain. The risk of a transfer of Malassezia yeasts from some animal species to humans should be evaluated.

b. Pathobiology.

Malassezia yeasts possess species specific properties which have not been fully explored. The expression of genes coding for allergenic proteins, restricted within certain species such as M. globosa, M. restricta and M. sympodialis, has shown different allergenic protein profiles thus indicating a possible variable between these species in their contribution to the pathogenesis of atopic dermatitis. Also, very few studies on the intraspecific variations of allergenic proteins have been carried out leaving much to be elucidated about the role of each Malassezia species in the pathogenesis of diseases, such as atopic dermatitis. Furthermore, the mechanism leading to the depigmentation observed in pityriasis versicolor alba has not been clarified. In that respect, factors such as the indole derivative pityriacitrin, produced by M. furfur and M. pachydermatis, which has been shown to be a potent UV filter and the observation that Malassezia yeasts display variation, both inter and intraspecific in their effect on melanin production encourage wholesale multidisciplinary studies. All of these have the aim of producing lasting results conducive to the realisation of the Working Group’s objectives.

II. Specific objectives

1. Determine appropriate sampling, isolation, identification and antifungal susceptibility testing procedures for Malassezia yeasts isolated from humans or animals and determine the zoonotic risk of M. pachydermatis, by collecting and typing strains associated to M. pachydermatis catheter-related fungaemia.
2. Create a list of reference strains and characterize them by use of the agreed standard methods that would be chosen. A database will be created to provide tools to perform online identifications.
3. Determine the most suitable typing method, or set of complementary typing methods.
4. Examine possible associations of Malassezia species-specific distribution patterns on healthy and diseased human skin. Evaluate whether geographical and/or disease-specific Malassezia species occure, and if so, whether they are associated with certain genotypes. Explore the occurrence of episodic or consistently mixed Malassezia species occurrence in related human dermatoses.
5. Review the pathobiology of *Malassezia* strains from multiple geographical locations. Assess *Malassezia* pathophysiology with respect to the tryptophan-derived secondary metabolism of, in particular, *M. furfur* and *M. pachydermatis*.

6. Define the factors that determine the distribution of *Malassezia* species amongst different animal hosts, and also the factors that render individual animals susceptible to the diseases caused by *Malassezia*.

III. Time schedule, verifiable and quantifiable objectives

If accepted, launching of the Group’s activities will be pursued at the TIMM meeting, Torino, Italy, 2007. To increase participation of colleagues from different countries and set suitable evaluation measures regarding procedures and results.

Presentation of results on objective items 1, 2 and 3 above is not anticipated until 2 years (ISHAM Congress, Tokyo, Japan, 2009). Items 4 to 6 described in the Specific Objectives paragraph is expected to be concluded in year 3-4. Report writing will commence from year 2 onwards.

IV. Expansion of the Working Group

Colleagues from different parts of the world, with special research interests in *Malassezia* epidemiology and pathobiology can contact the convener.

National Coordinators and Members of the Working Group

Argentina

Professor Gustavo Giusiano: gusgiusi@bib.unne.edu.ar / gustavogiusiano@yahoo.com.ar
Departamento de Micología
Instituto de Medicina Regional
Universidad Nacional del Nordeste
Av. Las Heras 727
3500 - Resistencia, Chaco

Dra. Silvana Ramadán: sramadan@fbiof.unr.edu.ar
CEREMIC (Centre Reference Micology)
Biochemist and Farmaceutical College
University of Rosario
Argentine

Brazil

Rosane orofino Costa: rosaneorofino@globo.com
Professor of Dermatology Department
University of Rio de Janeiro State
Chief of Medical Mycology Laboratory
Hospital Universitário Pedro Ernesto

Selene Dall’ Acqua Coutinho: selene@uol.com.br
Rua Agarbiá 48, São Paulo, SP, Brazil, 05053-010
Phone/Fax: (55) (11) 30214396
Bulgaria

M. Ivanova Kadurina
Dermatology and Venereology Department, Military Medical Academy, Sofia, Bulgaria

D. Konstantinov Gospodinov, Department of Dermatology and Venereology, University Hospital, Pleven, Bulgaria

L. Zisova: lzisova@abv.bg
Department of Dermatology, Higher Medical Institute, 15A Vassil Aprilov St., 4000 Plovdiv, Bulgaria.

China

R. Yuping: ranyuping@vip.sina.com
Department of Dermato-venereology, First Hospital, West China University of Medical Sciences, Chengdu, China

Colombia

Maria Caridad Cepero de García: mcegarcia@uniandes.edu.co
Universidad de Los Andes
Carrera 1 No. 18A-10
Departamento de Ciencias Biológicas
Laboratorio J-205 (LAMFU)
Bogotá

Denmark

M. C. Arendrup: mad@ssi.dk
Mycology Reference Laboratory, Statens Serum Institut, bygn. 45 / 112, Artillerivej 5
DK -2300 Copenhagen S, Denmark

D-M Saunte: DMS@ssi.dk
Department for Bacteriology, Mycology and Parasitology, State Serum Institute, Unit of Mycology and Parasitology Building 45/112, Artillerivej 5, DK-2300 Copenhagen S, Denmark

France

E. Gueho: e.gueho@wanadoo.fr.

J. Guillot: jguillot@vet-alfort.fr
Dept. Parasitology-Mycology, UMR 956 INRA, AFSSA, ENVA, UPVM Ecole Nationale Veterinaire d’Alfort, 94704 Maisons-Alfort, France

Germany

P. Mayser: Peter.Mayser@derma.med.uni-giessen.de
Department of Dermatology and Andrology, Justus Liebig University Giessen, Gaffkystrasse 14, 35385 Giessen, Germany.

P. Nenoff: pietro.nenoff@gmx.de
Laboratory for Medical Microbiology, Strasse des Friedens 8 DE-04579, Molbis, University of Leipzig, Germany.
Greece

I. Bassukas: ibassuka@cc.uoi.gr
G. Gaitanis: ggaitanis@med.uoa.gr
Department of Skin and Venereal Diseases, University Hospital of Ioannina, University of Ioannina, Medical School, S. Niarhos Avenue, 45500 Ioannina, Greece

M. Arabatzis: marabatz@med.uoa.gr
Mycology Laboratory, Medical School, University of Athens

India

Dr M R Shivaprakash MBBS, MD: mrshivprakash@yahoo.com/drshiva2005@hotmail.com
Assistant Professor,
Center for Advance Research In Medical Mycology(ICMR)
Department of Medical Microbiology,
Postgraduate Institute of Medical Education and Research,
Chandigarh,
India - 160012

Iran

Dr. Nasrollahi: ayat51@yahoo.co.in
Department of Medical Mycology
Faculty of Medical Sciences
Azad University of Tonekabon Branch.
Tonekabon city,
Iran, tonekabon 46817, PO.box:46815-559

Italy

F. Mancianti: manciant@vet.unipi.it
Department of Animal Pathology, Profilassi ed Igiene degli Alimenti, Universita di Pisa, Viale delle Piagge 2, 56124 Pisa, Italy.

Maria Anna Viviani: marianna.viviani@unimi.it
Laboratory of Medical Mycology, Department of Public Health-Microbiology-Virology, Section of Public Health, Università degli Studi,
Via Pascal 36, 20133 Milan, Italy

Japan

T. Sugita: sugita@my-pharm.ac.jp
Department of Microbiology, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan.

Korea

Yang-won Lee, M.D., Ph.D.: 20050078@kuh.ac.kr
Department of Dermatology
Konkuk University School of Medicine
4-12 Hwayang-dong, Gwangjin-gu, Seoul 143-729 Korea
Netherlands

T. Boekhout: boekhout@cbs.knaw.nl
V. Robert: robert@cbs.knaw.nl
Yeast Division, Centraal Bureau voor Schimmelcultures (CBS), Postbus 85167 (Uppsalalaan 8), 3508 AD Utrecht, The Netherlands.

Spain

Javier Cabañes: javier.cabanes@uab.es
Veterinary Mycology Group, Department of Animal Hygiene and Anatomy, Faculty of Veterinary Science, Universitat Autonoma de Barcelona, 08193 Bellaterra (Barcelona), Spain.

V. Crespo Erchiga: vicente.crespo.sspa@juntadeandalucia.es
T. Martin Gonzalez
Department of Dermatology, Carlos Haya University Hospital, Plaza del Hospital Civil s/n, 29009 Malaga, Spain

Sweden

J. Faergemann: Jan.Faergemann@derm.gu.se
Department of Dermatology, Sahlgrenska University Hospital, Goteborg, Sweden.

Turkey

S. Arikan: sarikan@metu.edu.tr
Hacettepe University School of Medicine, Infectious Diseases and Clinical Microbiology Department, School of Medicine, Ankara 06100, Turkey.

United Arab Emirates

Dr Zulfa Al Deesi zulfa@ottome.com
United Arab Emirates, Dubai
Pathology Department, Microbiology Unit
P.O. Box 27418

United Kingdom

R. Ashbee: h.r.ashbee@leeds.ac.uk
Mycology Reference Centre, Department of Microbiology, Old Medical School, Leeds General Infirmary, Leeds, LS 1 3EX

R. Bond: Veterinary Dermatology, Royal Veterinary College, UK RBond@RVC.AC.UK

R. Hay: r.hay@Queens-Belfast.AC.UK
Faculty of Medicine and Health Sciences, Queens University Belfast, Northern Ireland, UK.

Gillian Midgley: bryn-Jones@fairdial.co.uk
USA

E. Balish, Ph.D: balish@musc.edu
Professor of Microbiology and Immunology
Medical Univ of S. Carolina
Dept. of Microbiology and Immunology
173 ASHLEY AVE. BSB 203
PO BOX 250504
CHARLESTON, SC.29425